THE FUTURE OF VACCINES

ASCO ANNUAL MEETING
JUNE 4, 2016
BAVARIAN NORDIC
INVESTOR & ANALYIST UPDATE & RECEPTION

Welcome and Introduction to Bavarian Nordic’s Cancer immunotherapy Programs

Paul Chaplin, Ph.D.
President & Chief Executive Officer, Bavarian Nordic

A Clinical Overview of PROSTVAC as Monotherapy and Combination Therapy

James L. Gulley, M.D., Ph.D.
Chief, Genitourinary Malignancies Branch, Head, Immunotherapy Section, Director, Medical Oncology Service, CCR Office of the Clinical Director, National Cancer Institute

Brachyury: A Novel Target with First in Man Data. Presentation of Clinical Data, Lessons Learned, and Potential Pathways Forward

Christopher R. Heery, M.D.
Associate Research Physician, Laboratory of Tumor Immunology and Biology, Director, Clinical Trials Group, National Cancer Institute
DEVELOPMENT OF BRACHYURY-TRICOM

CHRISTOPHER R. HEERY, M.D.
ASSOCIATE RESEARCH PHYSICIAN
HEAD OF CLINICAL TRIALS GROUP
LABORATORY OF TUMOR IMMUNOLOGY AND BIOLOGY
CENTER FOR CANCER RESEARCH
NATIONAL CANCER INSTITUTE
Overview of Vaccine and Target

MVA (modified vaccinia ankara)
- non-replicating pox virus
- Safe (current smallpox vaccine)
- Can be given repeatedly

Brachyury
- T-box transcription factor
- Master driver of EMT
- Expression correlates with invasion, migration, and treatment resistance
- Poor prognostic factor
- Significant expression in Chordoma, rare mesodermal remnant tumor
- Also expressed in:
 - Colorectal (poor prognostic indicator)
 - Breast
 - ER+ tamoxifen adjuvant – poor prognostic indicator
 - Triple Negative – implicated as major driver
 - Lung cancer (Small cell and NSCLCa)
 - Hepatocellular Cancer (poor prognostic indicator)
 - Prostate Cancer (poor prognostic indicator)
 - Merkel Cell Carcinoma

TRICOM
- 3 human costimulatory molecules
- Not amenable to murine studies
Opportunities

Rare tumors:
- Chordoma
- Merkel Cell Carcinoma

“Immunogenic” tumors (respond to PD-1/L1 blockade)
- Lung
- Triple negative breast
- Hepatocellular
- Merkel Cell

“Cold” tumors (minimal responses to PD-1/L1 blockade)
- Colorectal
- ER+ breast cancer
- Prostate cancer
BRACHYURY OVER-EXPRESSION INDUCES EMT IN EPITHELIAL TUMOR CELLS

PANC-1-pcDNA
PANC-1-pBrachyury

Fernando...Palena. J Clin Invest. 2010; 120:533-44.
BRACHYURY CONTROLS METASTASIS IN LUNG CANCER MODEL

LUNG MICROMETASTASIS MODEL
- Nude mouse
- SC tumor implantation
- Day 0
- Day 15
- Tumor measurement
- Lung homogenates
- Subcutaneous tumor volume (mm³)
- H460-control.shRNA vs. H460-Brachyury.shRNA
- BRACHYURY DOES NOT AFFECT PRIMARY TUMOR
- Number of colonies per lung
- H460-control.shRNA vs. H460-Brachyury.shRNA

EXPERIMENTAL LUNG METASTASIS MODEL
- Nude mouse
- IV tumor implantation
- Day 0
- Day 45
- Evaluation of lungs for presence of tumor nodules
- Number of tumor nodules per lung
- H460-control.shRNA vs. H460-Brachyury.shRNA
- BRACHYURY CONTROLS TUMOR DISSEMINATION
- LUNG MACROMETASTASES
- p = 0.002

Fernando...Palena. J Clin Invest. 2010; 120:533-44.
Brachyury is absent in the majority of NORMAL TISSUES

<table>
<thead>
<tr>
<th>Normal tissue</th>
<th>Brachyury positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testis</td>
<td>3/3</td>
</tr>
<tr>
<td>Thyroid</td>
<td>4/6</td>
</tr>
<tr>
<td>Lung</td>
<td>0/5</td>
</tr>
<tr>
<td>Heart</td>
<td>0/3</td>
</tr>
<tr>
<td>Brain</td>
<td>0/3</td>
</tr>
<tr>
<td>Liver</td>
<td>0/3</td>
</tr>
<tr>
<td>Kidney</td>
<td>0/3</td>
</tr>
<tr>
<td>Spleen</td>
<td>0/3</td>
</tr>
<tr>
<td>Skeletal Muscle</td>
<td>0/3</td>
</tr>
<tr>
<td>Adrenal Gland</td>
<td>0/1</td>
</tr>
<tr>
<td>Skin</td>
<td>0/1</td>
</tr>
</tbody>
</table>

Brachyury is found in various types of CANCER

<table>
<thead>
<tr>
<th>Cancer types that are Brachyury positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
</tr>
<tr>
<td>NSCLC</td>
</tr>
<tr>
<td>SCLC</td>
</tr>
<tr>
<td>Breast</td>
</tr>
<tr>
<td>TNBC</td>
</tr>
<tr>
<td>Prostate</td>
</tr>
<tr>
<td>Colon</td>
</tr>
<tr>
<td>Liver</td>
</tr>
<tr>
<td>Gastric</td>
</tr>
<tr>
<td>Head and neck</td>
</tr>
<tr>
<td>Chordoma</td>
</tr>
<tr>
<td>Embryonal Carcinoma</td>
</tr>
</tbody>
</table>

Cancer types that are Brachyury positive:
- Lung
- NSCLC
- SCLC
- Breast
- TNBC
- Prostate
- Colon
- Liver
- Gastric
- Head and neck
- Chordoma
- Embryonal Carcinoma

BRACHYURY EXPRESSION IN LUNG TUMOR TISSUES CORRELATES WITH TUMOR STAGE

Brachyury mRNA expression relative to GAPDH

- Stage II, III, and IV represented by ■, △, and ×, respectively.

Fernando...Palena. J Clin Invest. 2010; 120:533-44.
BRACHYURY EXPRESSION IN BREAST TUMOR TISSUES CORRELATES WITH TUMOR GRADE

Brachyury mRNA expression relative to GAPDH

Grade 1: 0/4 (0.0%)
Grade 2: 4/36 (11.1%)
Grade 3: 13/57 (22.8%)
BRACHYURY AND TUMOR PROGNOSIS

Brachyury expression in PRIMARY TUMOR correlates with poor clinical outcome in lung, breast, triple negative breast ca., prostate, colon, oral squamous, GIST and hepatocellular carcinoma.

Tamoxifen-treated Breast Ca.

Palena et al, JNCI (2014)

Lung Cancer

Hepatocellular Ca.

Expression of brachyury protein in primary and metastatic breast carcinoma lesions by immunohistochemistry utilizing a murine monoclonal anti-brachyury Ab

<table>
<thead>
<tr>
<th>Pt</th>
<th>Tissue</th>
<th>Brachyury</th>
<th>% Positivity</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Breast primary tumor</td>
<td></td>
<td>30</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Met(^+) lymph node (a)</td>
<td></td>
<td>90</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Met(^+) lymph node (b)</td>
<td></td>
<td>90</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Non-met lymph node (c)</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>9</td>
<td>Breast primary tumor</td>
<td>Focal</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Met(^+) lymph node (a)</td>
<td></td>
<td>60</td>
<td>++</td>
</tr>
<tr>
<td>9</td>
<td>Met(^+) lymph node (b)</td>
<td></td>
<td>60</td>
<td>++</td>
</tr>
<tr>
<td>9</td>
<td>Non-met lymph node (c)</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>31</td>
<td>Pleura</td>
<td></td>
<td>90</td>
<td>+</td>
</tr>
<tr>
<td>32</td>
<td>Bone</td>
<td></td>
<td>90</td>
<td>++</td>
</tr>
<tr>
<td>33</td>
<td>Bone</td>
<td></td>
<td>90</td>
<td>+</td>
</tr>
<tr>
<td>34</td>
<td>Brain</td>
<td></td>
<td>70</td>
<td>++</td>
</tr>
</tbody>
</table>
Infection of human DCs in vitro with MVA-Brachyury-TRICOM

<table>
<thead>
<tr>
<th>Infection with</th>
<th>CD80</th>
<th>CD54</th>
<th>CD58</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA-WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 MOI</td>
<td>15.6 (23)</td>
<td>86.6 (254)</td>
<td>89.0 (123)</td>
</tr>
<tr>
<td>10 MOI</td>
<td>17.3 (21)</td>
<td>81.2 (188)</td>
<td>82.9 (91)</td>
</tr>
<tr>
<td>MVA-Brachyury-TRICOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 MOI</td>
<td>83.3 (490)</td>
<td>94.9 (847)</td>
<td>95.4 (394)</td>
</tr>
<tr>
<td>10 MOI</td>
<td>81.4 (587)</td>
<td>91.8 (792)</td>
<td>93.9 (381)</td>
</tr>
</tbody>
</table>

Mean Flourescence Instensity (MFI) in parentheses

Western blot

MW	Uninfected	MVA-WT	MVA-Brachyury-TRICOM
[Image of Western blot showing Brachyury and GAPDH bands for MW, Uninfected, MVA-WT, and MVA-Brachyury-TRICOM]
Brachyury-specific CD8+ T cell stimulation by MVA-Brachyury-TRICOM infected DCs compared with MVA-TRICOM infected DCs
Patients Who Have Generated T-Cell Responses to Brachyury Post-Vaccination

<table>
<thead>
<tr>
<th>Pt</th>
<th>Vaccine</th>
<th>Metastatic Tumor Type</th>
<th>PSA/CEA</th>
<th>ELISPOT Brachyury</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSA-TRICOM + αCTLA-4</td>
<td>Prostate Ca.</td>
<td>Pre: <1/200,000
Post: 1/150,000</td>
<td><1/200,000
1/46,000</td>
<td><1/200,000
<1/200,000</td>
</tr>
<tr>
<td>2</td>
<td>PSA-TRICOM + αCTLA-4</td>
<td>Prostate Ca.</td>
<td>Pre: <1/200,000
Post: 1/40,000</td>
<td><1/200,000
1/41,000</td>
<td><1/200,000
<1/200,000</td>
</tr>
<tr>
<td>3</td>
<td>Yeast-CEA</td>
<td>Medullary Thyroid Ca.</td>
<td>Pre: <1/200,000
Post: 1/9,677</td>
<td><1/200,000
1/12,766</td>
<td><1/200,000
<1/200,000</td>
</tr>
<tr>
<td>4</td>
<td>Yeast-CEA</td>
<td>Colorectal Ca.</td>
<td>Pre: <1/200,000
Post: 1/200,000</td>
<td><1/200,000
1/60,000</td>
<td><1/200,000
<1/200,000</td>
</tr>
</tbody>
</table>
MVA-BRACHYURY-TRICOM

PHASE I

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Dose and Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 n = 3 to 6</td>
<td>1 site of injection at (2 \times 10^8) IU given every 28 days for 3 doses. If no evidence of disease progression, 3 more monthly doses may be given.</td>
</tr>
<tr>
<td>2 n = 3 to 6</td>
<td>2 sites of injection at (2 \times 10^8) IU given every 28 days for 3 doses. If no evidence of disease progression, 3 more monthly doses may be given.</td>
</tr>
<tr>
<td>3 n = 3 to 6</td>
<td>4 sites of injection at (2 \times 10^8) IU given every 28 days for 3 doses. If no evidence of disease progression, 3 more monthly doses may be given.</td>
</tr>
</tbody>
</table>

- **MVA (modified vaccinia ankara)**
 - non-replicating pox virus
 - Safe (current smallpox vaccine)
 - Can be given repeatedly

- **Brachyury**
 - T-box transcription factor
 - Master driver of EMT
 - Expression correlates with invasion, migration, and treatment resistance
 - Poor prognostic factor
 - Significant expression in Chordoma, rare mesodermal remnant tumor

- **TRICOM**
 - 3 human costimulatory molecules
 - Not amenable to murine studies

An additional modality for sequential therapy
Key Eligibility Criteria

Standard Phase I eligibility except for:

Inclusion:
- Measurable or non-measurable disease (must be evaluable)
- ECOG 0-1
- Prior immune therapy is allowed

Expansion Inclusion allowed ongoing treatment for patients with stable disease on:
- Hormonal therapy in ER+ breast ca and prostate cancer,
- Her2-targeted therapy in HER2+ breast cancer
- Erlotinib in EGFR mutation+ lung adenocarcinoma
- Capecitibine (oral 5-FU precursor drug) and bevacizumab in mCRC

Exclusion:
- HIV, hepatitis
- Active autoimmune disease
- Systemic steroid use (except physiologic replacement doses, local (topical, nasal, inhaled) or to treat or prevent allergic reactions (contrast)
Endpoints

Primary

- Safety and tolerability

Secondary

- CD8 and CD4 immunologic response ELISPOT and proliferation in response to Brachyury
- Clinical benefit
- General immune activation: immune cell subsets in PBMCs

Correlative Studies

- Correlation of clinical findings with general immune activation
- Correlation of clinical findings with CD8 and CD4 immunologic response
- Correlation of clinical findings with brachyury expression and EMT markers
Baseline Demographics

All Patients (n = 38)

<table>
<thead>
<tr>
<th>Gender</th>
<th># (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>18 (47%)</td>
</tr>
<tr>
<td>Female</td>
<td>20 (53%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age - Median (range)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60 (35-86)</td>
<td></td>
</tr>
</tbody>
</table>

Primary Disease

<table>
<thead>
<tr>
<th>Primary Disease</th>
<th># (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordoma</td>
<td>13 (34.2%)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>9 (23.7%)</td>
</tr>
<tr>
<td>Breast (ER+)</td>
<td>5 (13.2%)</td>
</tr>
<tr>
<td>NSCLCa (EGFR mutated)</td>
<td>4 (10.5%)</td>
</tr>
<tr>
<td>Prostate (D0)</td>
<td>3 (7.9%)</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>2 (5.3%)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>1 (2.6%)</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>1 (2.6%)</td>
</tr>
</tbody>
</table>

Maintenance Therapy Expansion

<table>
<thead>
<tr>
<th>Disease</th>
<th># (% of tumor type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal (Capecitibine +/- Bevacizumab)</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td>NSCLCa (EGFR mutated – erlotinib)</td>
<td>4 (100%)</td>
</tr>
<tr>
<td>Breast (ER+ - hormonal therapy)</td>
<td>5 (100%)</td>
</tr>
</tbody>
</table>
ADVERSE EVENTS

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th></th>
<th>Grade 2</th>
<th></th>
<th>Grade 3</th>
<th></th>
<th>Total All Grades</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Patients</td>
<td>Events</td>
<td>Patients</td>
<td>Events</td>
<td>Patients</td>
<td>Events</td>
<td>Patients</td>
</tr>
<tr>
<td>Creatinine Increased</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3 (2.9%)</td>
<td>2 (5.4%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>4 (3.9)</td>
<td>3 (8.1%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.0%)</td>
<td>1 (1.0%)</td>
</tr>
<tr>
<td>Fever</td>
<td>9 (8.8%)</td>
<td>7 (18.9%)</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>10 (9.8%)</td>
<td>7 (18.9%)</td>
</tr>
<tr>
<td>Flu like symptoms</td>
<td>20 (19.6%)</td>
<td>13 (35.1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>20 (19.6%)</td>
<td>13 (35.1%)</td>
</tr>
<tr>
<td>Headache</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>25 (24.5%)</td>
<td>18 (48.6%)</td>
<td>25 (24.5%)</td>
<td>18 (48.6%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>50 (49.0%)</td>
<td>28 (75.7%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
</tr>
<tr>
<td>Rash acneiform</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.0%)</td>
<td>1 (2.7%)</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (2.0%)</td>
<td>1 (2.7%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (2.0%)</td>
<td>1 (2.7%)</td>
</tr>
</tbody>
</table>

Dose Level 1
- n = 3 patients enrolled, 0 DLT

Dose Level 2
- n = 17 patients enrolled, 0 DLT

Dose Level 3
- n = 18 patients enrolled, 0 DLT

Dose level 1 – 3 patients enrolled, 0 DLT
Dose level 2 – 17 patients enrolled, 0 DLT
Dose level 3 – 18 patient enrolled 0 DLT

Dose Level 2 n = 17 patients 49 doses

<table>
<thead>
<tr>
<th></th>
<th>Events</th>
<th>Patients</th>
<th>Events</th>
<th>Patients</th>
<th>Events</th>
<th>Patients</th>
<th>Events</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine increased</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
</tr>
<tr>
<td>Fever</td>
<td>3 (6.1%)</td>
<td>2 (11.8%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>4 (8.2%)</td>
<td>2 (11.8%)</td>
</tr>
<tr>
<td>Flu like symptoms</td>
<td>3 (6.1%)</td>
<td>3 (17.6%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>3 (6.1%)</td>
<td>3 (17.6%)</td>
</tr>
<tr>
<td>Headache</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>10 (20.4%)</td>
<td>6 (35.3%)</td>
<td>11 (22.4%)</td>
<td>8 (47.1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>21 (42.9%)</td>
<td>13 (76.5%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (4.1%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (4.1%)</td>
<td>1 (5.9%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td>1 (2.0%)</td>
<td>1 (5.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Dose Level 3 n = 17 patients 44 doses

<table>
<thead>
<tr>
<th></th>
<th>Events</th>
<th>Patients</th>
<th>Events</th>
<th>Patients</th>
<th>Events</th>
<th>Patients</th>
<th>Events</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>1 (22.7%)</td>
<td>1 (5.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (22.7%)</td>
<td>1 (5.9%)</td>
</tr>
<tr>
<td>Fever</td>
<td>6 (13.6%)</td>
<td>5 (29.4%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>6 (13.6%)</td>
<td>5 (29.4%)</td>
</tr>
<tr>
<td>Flu like symptoms</td>
<td>17 (38.6%)</td>
<td>10 (58.8%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>17 (38.6%)</td>
<td>10 (58.8%)</td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>13 (29.5%)</td>
<td>10 (58.8%)</td>
<td>13 (29.5%)</td>
<td>9 (52.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>26 (59.1%)</td>
<td>13 (76.5%)</td>
</tr>
</tbody>
</table>
Carcinoma – By Cycle

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Dose Level</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle I</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td></td>
</tr>
</tbody>
</table>

Chordoma – By Cycle

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Dose Level</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle I</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
<td>CD4</td>
<td>CD8</td>
</tr>
<tr>
<td></td>
<td>Cycle II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td></td>
</tr>
</tbody>
</table>

>250 | >2,000 | >500 | >5,000 | >1,000
Conclusions to Date with MVA-Brachyury-TRICOM

1. Safety profile established and very good
2. Brachury-specific immune responses observed in early sample analysis
3. Other correlative studies pending (paired biopsy analysis, circulating tumor cell, 123-subset analysis)
Brachyury-TRICOM studies in Chordoma
Agent, Source, Isotype Table

<table>
<thead>
<tr>
<th>Agent</th>
<th>Source</th>
<th>Isotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS-936559</td>
<td>MDX-1105</td>
<td>Bristol-Myers Squibb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fully human IgG4</td>
</tr>
<tr>
<td>MEDI4736</td>
<td>Durvalumab</td>
<td>Medimmune/AstraZeneca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fc-modified IgG1</td>
</tr>
<tr>
<td>MPDL3280A</td>
<td>Atezolizumab</td>
<td>Genetech/Roche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fc-modified IgG1</td>
</tr>
<tr>
<td>MSB0010718C</td>
<td>avelumab</td>
<td>EMD Serono</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fully human IgG1</td>
</tr>
</tbody>
</table>

Anti PD-L1 antibody induces tumor death via check point blockade

Diagram showing the interaction between T cells and tumor cells, including the roles of PD-1 and B7-H1 in the context of PD-L1 blockade.

MARIO SZNOl, AND LIEPING CHEN
Induces tumor death via ADCC (Antigen-dependent cell-mediated cytotoxicity)

From Dr. David

Wayne et al/ Nature Reviews Immunology Apr.2003
PD-L1 Expression in Chordoma

The therapeutic potential of anti-PD-L1 antibody for chordoma is unknown
Chordoma Cell Lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Derivation</th>
<th>MHC-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>JHC7</td>
<td>61-year old Female Primary chordoma</td>
<td>HLA A24(+)</td>
</tr>
<tr>
<td>UM-Chor1</td>
<td>66-year old Male Primary clival chordoma</td>
<td>HLA A2(+)</td>
</tr>
<tr>
<td>UCH2</td>
<td>72-year old Female Recurrent sacral chordoma</td>
<td>HLA A2(-)/A24(-)</td>
</tr>
<tr>
<td>MUG-Chor1</td>
<td>57-year old Female Sacral chordoma</td>
<td>HLA A11(+)</td>
</tr>
</tbody>
</table>

JHC7 and UM-Chor1 were obtained from the Chordoma Foundation
U-CH2 and MUG-Chor1 were obtained from ATCC
What is the baseline expression of MHC-I in chordoma and can it be modulated with IFN-γ treatment?

Expression of MHC-I was significantly upregulated by IFN-γ in 4/4 cell lines.28
What is the baseline expression of PD-L1 in chordoma and can it be modulated with IFN-γ treatment?

Expression of PD-L1 was significantly upregulated by IFN-γ in 4/4 cell lines.

Tumor cells
+ IFN-γ 50 ng/ml
24 hours
Flow cytometry
Can the ADCC capability of anti-PD-L1 mAb (Avelumab) be exploited for chordoma?

Tumor cells + IFN-γ 50 ng/ml 24 hours
4h NK assay +/- avelumab (2 ug/ml)

Purified normal human NK cells
50:1 E:T ratio

Similar observations with UM-Chor1, U-CH2 and MUG-Chor1
IFN-γ treated cells showed enhanced sensitivity to ADCC via avelumab
Model of indirect enhancement of ADCC by antigen-specific T-cells

- these studies used exogenous IFN-γ
- model system to recapitulate IFN-γ release from antigen-specific T-cells (from vaccine) into microenvironment and interrogate PD-L1 ADCC

1. VACCINE
 - tumor antigen specific T-cell recognition of tumor
2. Induce IFN-γ
3. PD-L1 upregulation
4. Increase binding of anti-PD-L1 Ab
5. Enhance NK mediated killing of tumor

Enhance NK mediated killing of tumor
Model of a patient receiving a brachyury vaccine

UM-Chor1 cells + Naïve CD8+ T cell
Brachyury specific CD8+ T cell line (Tp2A)

IFN-γ concentration (pg/ml)

<table>
<thead>
<tr>
<th></th>
<th>IFN-γ concentration (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>< 3.76</td>
</tr>
<tr>
<td>Brachyury specific CD8+ T cell line (Tp2A)</td>
<td>1334.14</td>
</tr>
<tr>
<td>Normal donor naïve CD8+ T cells</td>
<td>9.58</td>
</tr>
</tbody>
</table>

PD-L1 expression

<table>
<thead>
<tr>
<th></th>
<th>PD-L1 expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td></td>
</tr>
<tr>
<td>% Positive</td>
<td>MFI</td>
</tr>
<tr>
<td>Brachyury specific CD8+ T cell line (Tp2A)</td>
<td>86</td>
</tr>
<tr>
<td>Normal donor naïve CD8+ T cells</td>
<td>42.7</td>
</tr>
<tr>
<td>% Positive</td>
<td>MFI</td>
</tr>
<tr>
<td>60.3</td>
<td>12.9</td>
</tr>
<tr>
<td>47.9</td>
<td>9.33</td>
</tr>
</tbody>
</table>

24hr ELISA (IFN-γ)
Flow cytometry (PD-L1)
ADCC assay
Model of a patient receiving a brachyury vaccine

Tumor cells + Naïve CD8+ T cell 24hr ELISA (IFN-γ)
Naïve CD8+ T cell Flow cytometry (PD-L1)
Brachyury specific CD8+ T cell ADCC assay

PD-L1 expression

<table>
<thead>
<tr>
<th>control</th>
<th>IFN-γ</th>
<th>Brachyury specific CD8+ T cell line (Tp2A)</th>
<th>Normal donor naïve CD8+ T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Positive</td>
<td>MFI</td>
<td>% Positive</td>
<td>MFI</td>
</tr>
<tr>
<td>60.3</td>
<td>12.9</td>
<td>97</td>
<td>89.4</td>
</tr>
</tbody>
</table>

Brachyury specific T cells induced PD-L1 expression of chordoma

Chordoma cells increased the sensitivity to ADCC by avelumab

Potential of combination use of brachyury vaccine and avelumab
A randomized phase II study of Erlotinib with or without MVA-Brachyury-TRICOM vaccine in subjects with metastatic lung adenocarcinoma with activating EGFR mutations

Christopher Heery, MD
LTIB, CCR, NCI, NIH
EMT induces resistance to immune-mediated lysis

Objective: can reduction of EMT via EGFR blockade improve tumor susceptibility to immune attack?
ERLOTINIB TREATMENT DECREASES EXPRESSION OF BRACHYURY AND FIBRONECTIN

NSCLC cell line: H460 – high Brachyury, mesenchymal

Cells were treated with erlotinib (replenished daily)

↓

Protein extracts at 72hr for WB

Brachyury

Fibronectin

↓

Matrigel® coated membrane = ECM

↓

ECM invading cells on the underside of the membrane are counted under X100

Duration of the assay = 17hr

DMSO 0.1 1

erlotinib (µM)

Relative expression

0.0

0.5

1.0

DMSO 0.1 1

erlotinib (µM)

0

40

80

120

Number of cells

DMSO 0.1 1

Erlotinib (µM)
ERLOTINIB IMPROVES IMMUNE-MEDIATED LYSIS OF LUNG CARCINOMA CELLS

Erlotinib sensitive lung cancer cell lines

Cells were pre-treated with erlotinib 0.1uM for 72hr

- Cells were labeled with 111In
- In vitro lysis assay with NK (CD56+) cells
 - Effector to target ratio 25:1

![Graph showing percent lysis for HCC4006, H1650, H441 with DMSO and 0.1uM erlotinib]

Lung cancer cell line H522 (erlotinib resistant)

Cells were pre-treated with erlotinib for 72hr

- In vitro lysis assay
 - Effector to target ratio 50:1

Effector cells: Brachyury-specific CD8+ T cells

![Graph showing percent specific lysis for H522 with DMSO, 0.1uM, 1uM erlotinib]
Simultaneous erlotinib enhances T-cell immune-mediated lysis

Control CTL assay using antigen specific T cells against MUC1 or Brachyury
Erlotinib added to the assay (overnight, 16 h)

![Graph showing % specific lysis for HCC827, PC9, and HCC4006 cells with and without erlotinib](image)

Simultaneous erlotinib enhances T cell-mediated lysis
Proposed Phase II Clinical Trial

PHASE II

Randomized Phase II Trial of Erlotinib Alone or in Combination with MVA-Brachyury-TRICOM Vaccine in Patients with Previously Untreated Metastatic Adenocarcinoma of the Lung with Erlotinib-Sensitive EGFR Mutation Present

Metastatic Lung Adenocarcinoma with activating EGFR mutation*

Randomize

Erlotinib alone
n = 31

Erlotinib plus Vaccine
n = 31

*Activating mutations include exon 19 deletions or L858R (~15% patients)

Primary endpoint: PFS
- Erlotinib alone arm, estimated at 11 month median PFS
- Goal on combination arm = 20 months PFS
- n = 31pts per arm

Secondary endpoints: OS, immune endpoints

Trial PI: Dr. Chris Heery
Benefits of Trial Design

• Ample time for immune response to occur

• Erlotinib induces objective response
 – PR 60-80% of these patients (Zhou Lancet 2011 and Rosell Lancet 2012)
 – Cells killed by erlotinib may boost immunologic effects – antigen spreading, improved
tumor microenvironment

• For cells not killed by erlotinib, cells are made more amenable to T cell
killing
Randomized Phase 2 Study of Vaccine in Stage II Colon Cancer and High Risk Features Determined by “Immunoscore”
Galon Science 2006

(A) Disease-Free Survival vs. Survival (months) for UICC-TNM classifications.

(B) Disease-Free Survival vs. Survival (months) for CD3_{CT}^{Hi}CD3_{IM}^{Hi} and CD3_{CT}^{Lo}CD3_{IM}^{Lo}.

(C) Disease-Free Survival vs. Survival (months) for CD45RO_{CT}^{Hi}CD45RO_{IM}^{Hi} and CD45RO_{CT}^{Lo}CD45RO_{IM}^{Lo}.
CV-301 or Brachyury-TRICOM
Adjuvant “Immunoscore” Trial

Population:
Adjuvant setting Colorectal cancer
Patients with high risk (50% recurrence at 2 years) by Immunoscore

Design:
Randomized phase II → Standard of care +/- vaccine (PANVAC)

Endpoint: recurrence free survival

Goal: Convert RFS at 2 years from 50% to 75%

Estimated n = 40 per arm
Combined regions analysis

\[\frac{93}{318} = 29\% \]
Stage I, II, III Patients

=249 → 30/249 = 12%
Patients with colon cancer post resection stage II or III

- **Good / intermediate score**
 - Standard of care management

- **Poor score**
 - Randomize
 - **Immunotherapy plus standard of care**
 - **Standard of care alone**

Endpoints:
- Primary: PFS
- Secondary: OS, peripheral immune responses
Figure 5 Proposed taxonomy of colorectal cancer, reflecting significant biological differences in the gene expression-based molecular subtypes. CIMP, CpG island methylator phenotype; MSI, microsatellite instability; SCNA, somatic copy number alterations.
Acknowledgements

Laboratory of Tumor Immunology and Biology

Branch Chief
Jeffrey Schlom, PhD

Preclinical and Translational:
Claudia Palena, PhD
James Hodge, PhD
Rika Fujii, PhD
Al Tsang, PhD
John Greiner, PhD
Duane Hamilton, PhD
Romaine I. Fernando Ph.D.
Benedetto Farsaci, MD PhD
Renee Donahue, PhD
Sofia Gameiro Ph.D.
Italia Grenga M.D
Lauren Lepone Ph.D.

Genitourinary Malignancies Branch

Branch Chief
James L. Gulley, MD, PhD

Combined Clinical Trials group:
William Dahut, MD
Ravi A. Madan, MD
Julius Strauss, MD
Jenn Marte, MD
Sheri McMahon
Myrna Rauckhorst, RN
Chrisa Thomas
Andrea Burmeister, PA-C
Amy Hankin, PA-C
Diana Martin, RN
Ana Couvillon, NP
This presentation includes "forward-looking statements" that involve risks, uncertainties and other factors, many of which are outside of our control, that could cause actual results to differ materially from the results discussed in the forward-looking statements. Forward-looking statements include statements concerning our plans, objectives, goals, future events, performance and/or other information that is not historical information. We undertake no obligation to publicly update or revise forward-looking statements to reflect subsequent events or circumstances after the date made, except as required by law.